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Abstract
By using Monte Carlo simulation, we study the dynamics around equilibrium
of a uniform frustrated three-dimensional Ising model with nearest-
neighbour ferromagnetic interactions and small, but long-range (coulombic)
antiferromagnetic interactions. This model exhibits a strong slowing down
of the relaxations for temperatures below the critical temperature of the
unfrustrated model. The characteristics of this slowing down—super-Arrhenius
activated temperature dependence of the relaxation time and non-exponential
decay of the correlation function—are similar to those observed in fragile glass-
forming liquids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The physical origin of the dramatic increase of viscosity and relaxation times observed in
supercooled liquids when lowering the temperature, an increase that leads to the ‘glass
transition’, remains an open question. Part of the puzzle is the fact that no marked changes in any
of the structural quantities accompany the spectacular evolution of the dynamical quantities.
The slowing down, with the concomitant development of non-exponential character of the
relaxation functions, is seen in a wide variety of systems, most noticeably in weakly bonded
liquids such as organic molecular liquids, molten salts, or polymeric systems. In the latter,
known as ‘fragile’ glass formers, the viscosity and the primary (α-) relaxation time increase
by up to 15 orders of magnitude when temperature is decreased by a mere factor of two [1–3].
This behaviour is typical of a thermally activated process, but, instead of showing the usual
Arrhenius dependence, the effective activation barrier increases as the temperature decreases
(at least below a crossover temperature T ∗), which seems to indicate that the relaxation is
also collective and cooperative. There have been a number of suggestions regarding possible
sources for generating such activated, cooperative relaxation, among which is the introduction
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of spin–glass-like quenched randomness or specific kinetic constraints. We take here another
route in which the constraint is global and is derived from a feature that is claimed to be genuine
for all liquids: structural frustration.

One notion underlying the concept of structural (or geometric) frustration is that of a locally
preferred structure (LPS). This latter describes the local order of a system and corresponds to
configurations that locally minimize the energy and maximize the packing. For instance, the
LPS is well established in the case of hard spherical objects in two and three dimensions [4–6]:
in two dimensions, the local motif which optimizes packing is a disc surrounded by six
neighbours forming a perfect hexagon; in three dimensions, the densest local packing is
provided by spheres arranged at the vertices of regular tetrahedra, and 20 such tetrahedra
form a 13-atom icosahedron. A more realistic example is given by liquid water [7]. In the
low-pressure liquid, water molecules are thought to arrange themselves in a local structure
formed by two adjacent pentamers bonded via two hydrogen bonds: this structure is a low-
entropy, high-specific-volume, but low-energy state. On the other hand, the high-pressure
liquid has a different LPS in which two adjacent pentamers are more closely packed, but
non-bonded, thereby forming a high-energy, but high-entropy and low-specific-volume state.
Structural frustration denotes the fact that a LPS cannot be simply replicated to tile the whole
space periodically. The canonical example is again provided by systems of spherical particles:
whereas the local hexagonal pattern of discs can be extended in space to form a triangular
lattice, icosahedra, because of their fivefold rotational symmetry, cannot form a pure crystal
in three-dimensional (Euclidean) space. The two-dimensional case has no frustration; it also
has no supercooled fluid and no glass transition, but the three-dimensional system does. More
on geometric or structural frustration can be found in [5, 6].

Assuming the existence of a LPS and of structural frustration in liquids, Kivelson, Tarjus,
and co-workers [8] have proposed the following picture for supercooled liquids and the glass
transition: molecules in a liquid tend to arrange themselves in a LPS that minimizes some local
free energy. The tendency to extend this LPS in space is opposed by a (strain) free-energy cost
generated by the structural frustration. This strain free energy tends to grow super-extensively
with system size (or distance), thereby preventing any long-range extension of the LPS. As a
result of the competition between the local tendency to order and the frustration-induced strain,
the liquid, below some crossover temperature T ∗, breaks up into domains whose size and
further growth upon decreasing the temperature are limited by the frustration. Note that these
domains are equilibrium entities. Their presence can explain activated, cooperative dynamics
and non-exponential relaxation [8,9], but it should be stressed that the dynamics considered is
still at equilibrium and does not involve domain coarsening. A simple implementation of the
above picture can be obtained by introducing a coarse-grained Hamiltonian model in which
the tendency to order is described by a short-range, attractive effective interaction and the
frustration-induced super-extensive strain is mimicked by a weak, but long-range competing
interaction:

H = −
∑
r,r′

J (r − r′)O(r) · O(r′) +
Qa0

2

∑
r,r′

O(r) · O(r′)
|r − r′| (1)

where J (r) is a short-range interaction with a typical energy scale J , a0 is the characteristic
length associated with the local structure, i.e., is of the order of the mean intermolecular distance
in a liquid, O(r) is a local order variable associated with the LPS, and 0 < Q � J . Without
the frustration term, the reference Hamiltonian is chosen to have a continuous transition for a
temperature T 0

c ∼ J .
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2. The Coulomb frustrated Ising ferromagnet

2.1. The model and its phase diagram

In this paper, we specify the model as follows: the system is defined on a three-dimensional
cubic lattice whose spacing a0 is taken equal to 1, and O(r) is a (two-state) Ising variable.
The Hamiltonian is then

H = −J
∑
〈ij〉

SiSj +
Q

2

∑
i 
=j

SiSj

|rij | (2)

where J and Q are both positive and denote the strength of the ferromagnetic and the
antiferromagnetic interaction, respectively; Si = ±1 is the Ising spin variable. For the
ferromagnetic interaction, the bracket 〈ij〉 corresponds to a summation over all distinct pairs
of nearest neighbours, whereas for the antiferromagnetic one, the summation is over all pairs
of spins.

To ensure the existence of the thermodynamic limit, the Coulomb potential imposes that
the total magnetization of the system be zero. Therefore, long-range ferromagnetic order is
prohibited at all temperatures for any non-zero value of the frustration parameter Q/J ; this
describes the effect of the global constraint imposed by structural frustration, which forbids
any long-range order based on the periodic repetition of the LPS. At zero temperature, the
phase diagram can be calculated exactly [10]. For small values of the frustration parameter
Q/J , the ground state consists of lamellar phases in which lamellae of width m made up by
parallel planes of ferromagnetically aligned spins form a periodic structure of length 2m along
the perpendicular direction; this phase is conventionally denoted as 〈m〉 [11]. The period of
the lamellar phases increases when Q/J decreases. When the latter goes to zero, the width
of the lamellae diverges as (Q/J )−1/3 and the range of stability of the successive lamellar
phases shrinks to zero as (Q/J )4/3. For larger frustration parameter (Q/J > 1), the ground
state is formed by tubular or cubic phases. (For studying the dynamics, we shall restrict
ourselves to the small-frustration (Q/J < 1) region for which the ground states are lamellar
phases.) The mean-field theory [10] predicts a complex temperature–frustration phase diagram
in which the low-temperature region displays an infinite sequence of ‘flowers’, formed by an
infinite number of modulated phases with more and more complex modulation patterns as
the temperature increases, and is separated from the high-temperature paramagnetic region by
a line of second-order phase transitions. Recently, extensive Monte Carlo simulations [12]
have shown that whereas the low-temperature phase diagram has a complex structure similar
to that predicted by the mean-field approximation, the transition line between the modulated
and the paramagnetic phases is of first order. Following Brazovskii [13], this latter result
can be interpreted on the basis of the self-consistent Hartree approximation which predicts
the occurrence of a fluctuation-induced first-order transition (a transition with no nearby low-
temperature spinodal). Figure 1 displays a simplified picture of the phase diagram.

2.2. Dynamical properties

Contrary to the case for systems composed of atoms, whose time evolution follows from the
Newton equations and can be studied by means of molecular dynamics, there is no intrinsic
equation of motion for classical spin models. Since only the long-time behaviour is relevant
for our purpose, most local dynamical rules for evolving the spins are equally justified, and we
have chosen the Metropolis algorithm (with the constraint of zero total magnetization) as the
basic dynamics. The elapsed time t is then the number of Monte Carlo sweeps per spin. Let
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Figure 1. The simplified phase diagram obtained by Monte Carlo simulation [12]. The melting
line of the simple lamellar phases (full, dark curve and open symbols) displays cusps around
Q � 0.04, Q � 0.13, and Q � 0.65. In these regions, intermediate modulated phases appear that
correspond to mixed lamellar phases (dashed lines and filled symbols). The units are chosen such
that kB = J = 1. The horizontal dashed line corresponds to the transition temperature of the Ising
model in the absence of frustration.

us recall that for the frustrated Ising model, the total magnetization is not the order parameter,
as opposed to the case for the simple Ising model.

The quantity that we have computed for studying the relaxational properties is the spin–
spin self-correlation function defined as

C(t) = 1

N

∑
i

〈Si(t
′)Si(t

′ + t)〉 (3)

where the bracket denotes the thermal average and N is the total number of lattice sites. We
stress that C(t) is an equilibrium correlation function, which is monitored once the system has
reached equilibrium. In practice, the thermal average is performed as an average over twenty
different initial times t ′, all chosen larger than the relaxation time. All simulations were done
for a 163 cubic lattice with periodic boundary conditions, and the Coulomb interaction was
handled via Ewald sums. In what follows, we take J = 1.

3. Results and analysis

Figure 2 shows the correlation function C(t) for three values of the frustration parameter Q

((a) Q = 0.11, (b) Q = 0.006, (c) Q = 0.001) and for temperatures decreasing from T = 6 to
a temperature slightly above the first-order transition to modulated phases (from left to right).
Indeed, although possible in principle, we have not been able to study the disordered phase at
lower temperatures, the lattice sizes achievable in practice being too small to allow a proper
supercooling of the phase below the first-order transition.
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Figure 2. Spin–spin correlation function C(t) versus ln(t): (a) Q = 0.11, (b) Q = 0.006,
(c) Q = 0.001. The curves from left to right correspond to temperatures decreasing from T = 6
to a temperature slightly above the first-order transition. The dashed curves indicate temperatures
higher than T 0

c � 4.51, the critical temperature of the unfrustrated Ising model.

One observes in figure 2 a change of behaviour as frustration decreases. Whereas the
decay of C(t) at the highest frustration (Q = 0.11) seems to occur in a single step at all
temperatures, a two-step decay develops as temperature is lowered in the two other cases. At
high temperatures, typically above T 0

c � 4.51, the critical temperature of the unfrustrated Ising
model (dashed curve in figure 2), the whole time dependence of the correlation function is well
fitted by a simple exponential, exp(−t/τ0(T )). This is true for all values of the frustration.
At lower temperatures, it is impossible to describe the entire decay by a single exponential.
The emerging second step of the relaxation, clearly visible for Q = 0.006 and 0.001, is well
described by a stretched exponential, exp(−(t/τKWW(T ))β), with the stretching exponent β

decreasing as T decreases. On the other hand, the first step (short-time regime) can still be
fitted by a simple exponential exp(−t/τ0(T )). A two-step decay is typical of many glass-
forming systems, especially the fragile supercooled liquids [1–3]. One notices, however, that
the timescale separation seen in figure 2 between the two steps is not large enough for one to
observe the development of a plateau at intermediate times.

We have monitored as a function of temperature both the short- and the long-time relaxation
times, τ0(T ) and τα(T ) respectively. In order to avoid the uncertainty associated with the use
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Figure 3. An Arrhenius plot of the relaxation time τα for different values of the frustration parameter
Q (from left to right, Q = 0.001, 0.006, 0.02, 0.11). The full curves correspond to the FLDT
predictions (see the text).

of the three-parameter stretched-exponential fit, we have defined τα(T ), as is often done in
spin systems [14], by the condition C(τα) = 0.1.

The temperature dependence of the relaxation time τα(T ) is shown in figure 3 for four
different values of the frustration parameter Q on an Arrhenius plot. At high temperature, the
T -dependence is essentially Arrhenius-like, i.e., a straight line on the plot in figure 3. At lower
temperature, ln(τα(T )) increases more and more rapidly as the temperature decreases, thereby
departing from Arrhenius behaviour to become ‘super-Arrhenius’. Two features are worth
stressing. First, as predicted by the frustration-limited domain theory (FLDT) [8] (see above),
the departure from Arrhenius dependence becomes noticeable below a crossover temperature
that lies in the vicinity of T 0

c . Secondly, this departure becomes more marked as frustration
decreases.

The super-Arrhenius behaviour is typical of the viscous slowing down of fragile glass-
forming liquids: the more fragile a liquid, the more pronounced the super-Arrhenius
character [1–3]. The Coulomb frustrated Ising model thus displays some major aspects of the
phenomenology of glass-forming liquids: non-exponential relaxation and super-Arrhenius,
activated behaviour. In addition, ‘fragility’, i.e., the degree of departure from Arrhenius
T -dependence, can be continuously varied by tuning one parameter, the frustration strength
Q/J . To our knowledge, there is no other microscopic model showing this property. We finally
point out that the relaxation time τ0(T ), characteristic of the first step of the relaxation (at high
temperature above T 0

c where C(t) is essentially decaying as a simple exponential; the two
times τ0(T ) and τα(T ) are of course simply related via a constant factor), has an Arrhenius-
like T -dependence, τ0(T ) = τ0,∞ exp(E∞/T ), except at the very lowest temperatures at
which some deviations can be detected [15]1. This seems to indicate that proper cooperative

1 Note that the dynamics of the unfrustrated case (Q = 0) shows standard critical slowing down as T 0
c is approached,

and that, as expected, the relaxation time is well described by a power law.
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Figure 4. (a) FLDT parameter B versus frustration Q. The dashed line is the Q−1 FLDT
prediction [2]. (b) VTF parameter D versus frustration Q. The dashed line corresponds to the
Q1/2-power law predicted by Westfahl et al [18].

behaviour in the dynamics of the model distinctly sets in below T 0
c and is responsible for the

second step of the relaxation.
We have performed a number of quantitative analyses of the simulation data, all motivated

by existing theoretical approaches. We focus here on the dependence on T (and Q) of the
relaxation time τα(T ). One has to remember that the range of relaxation times spanned by
our data is limited (as in most simulations of glass-forming systems), quite far from the 15
decades observed experimentally in supercooled liquids. With this cautionary note in mind, we
find that the data are compatible with the activated-type expressions, τα(T ) ∝ exp(Eα(T )/T ),
predicted by the FLDT [8,9] and the entropic droplet approach [16–18], but are poorly described
by a power-law temperature behaviour, τα(T ) ∝ |T − Tc|−γ [15].

The FLDT [8] predicts an effective activation energy Eα(T ) that behaves as

Eα(T ) = E∞ T > T ∗ (4)

= E∞ + BT ∗
(

1 − T

T ∗

)8/3

T < T ∗ (5)

where Eα(T ) = T ln(τα(T )/τ∞), with τ∞ a characteristic high-T time. A priori, four
adjustable parameters (τ∞, E∞, B, T ∗) are needed for each frustration. This number can be
reduced by using the parameters obtained from the analysis of the first-step decay time τ0(T ),
which provides τ∞ and E∞. Only two parameters, B and T ∗, are then left adjustable for
each Q. The resulting curves are displayed in figure 3, and the agreement with the simulation
data is very good. As predicted by the theory, the crossover temperature T ∗ is found close to
T 0

c (T ∗/T 0
c � 1.04–1.12) and the super-Arrhenius parameter B, shown in figure 4(a), varies

roughly as Q−1; again, small frustration implies a large degree of super-Arrhenius character
and large fragility. Note that the value 8/3 � 2.67 of the exponent in equation (5) should
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Figure 5. An Arrhenius plot of the relaxation time τα for different values of the frustration
parameter Q (from left to right, Q = 0.001, 0.006, 0.02, 0.11). The full curves correspond to the
VTF predictions (see the text).

not be overinterpreted [8]: indeed, a similar agreement between theory and simulation data is
obtained for values between 2.5 and 2.9, an interval that includes 4νIsing � 2.52.

The approach developed by Schmalian, Wolynes, and co-workers [16–18] combines an
analysis of the free-energy landscape within the replica formalism with a dynamical scaling
argument based on entropic droplets. (This approach was first used in the context of generalized
spin glasses [19].) It leads to the well-known Vogel–Tammann–Fulcher (VTF) formula, widely
used to describe the viscous slowing down of glass-forming liquids [1–3]:

τα = τ0 exp

[
DT0

T − T0

]
. (6)

Three parameters, τ0, D, and T0, must be adjusted for each frustration, and we have
found no way to reduce this number as in the previous analysis. Figure 5 shows a comparison
between the simulation data and the best fits to the VTF expression. The agreement is again
good, with some slight discrepancies at high temperature and small frustration. As predicted
by Schmalian and Wolynes [16,17], the ‘ideal glass transition’ temperature T0 increases when
Q decreases (T0, the temperature at which the configurational entropy is predicted to vanish,
is always rather below the temperature of the first-order transition to the modulated phases,
i.e., is in the supercooled paramagnetic phase); as also predicted, the parameter D, inversely
related to the fragility, increases with Q, roughly as Q1/2 (see figure 4(b)).

4. How ‘fragile’?

As we have already mentioned, the notion of ‘fragility’ for glass-forming systems roughly
characterizes how strongly the T -dependence of the primary relaxation time or of the viscosity
deviates from an Arrhenius behaviour: the more fragile, the more super-Arrhenius. To quantify
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Figure 6. The super-Arrhenius contribution to the activation energy of the α-relaxation (in units of
T ∗) versus the inverse temperature T ∗/T . Open circles: three representative glass-forming liquids
(ortho-terphenyl, glycerol, GeO2) [20]; filled circles: binary Lennard-Jones systems [21]; filled
diamonds and lines: Coulomb frustrated Ising model for Q/J = 0.11, 0.02, 0.006, 0.001. (Note
that the OTP data go up to about 20, but have been truncated for clarity.)

this notion and compare systems that are very different at a microscopic level, one must at
least rescale the temperature. The ‘glass transition’ temperature Tg was originally proposed
by Angell as the scaling temperature [22]. However, Tg is defined operationally, e.g., as the
temperature at which τα is of the order of 102–103 s, and simulation data for various models
always stop (for practical reasons) many orders of magnitude below macroscopic times typical
of the experimental glass transition temperatures. For this reason, a scaling of the temperatures
with respect to the crossover temperature T ∗ at which one observes the passage from Arrhenius
to super-Arrhenius behaviour has been suggested [23]. The determination of T ∗ is course
subject to uncertainty, but a good description of many glass-forming liquids [20], of a binary
Lennard-Jones fluid model [21], and, as seen above, of the Coulomb frustrated Ising model
can be achieved in this way.

We thus plot in figure 6 the super-Arrhenius contribution to the effective activation energy
for relaxation, Eα(T )−E∞, in units of T ∗ versus T ∗/T for three representative glass-forming
liquids [20], a very fragile (ortho-terphenyl), an intermediate (glycerol), and a non-fragile
or strong one (GeO2), together with simulation data on a binary Lennard-Jones model [21]
and our present results on the Coulomb frustrated Ising model for four different frustrations.
Figure 6 illustrates the difference between the range of reduced activation energies spanned
by the fragile glass-forming liquids and that obtained for computer-simulated models. It also
shows that by varying the frustration strength by two orders of magnitude (from Q = 0.11
down to 0.001), one covers with the Coulomb frustrated model a broad spectrum of fragilities,
quite comparable to that observed in glass-forming liquids.
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5. Conclusions

The global constraint associated with the structural frustration may generate a competition
of effects operating on very different length scales. We have shown that this competition,
in the absence of any externally imposed quenched disorder, leads to the emergence of slow
dynamics, whose characteristics (activated super-Arrhenius temperature dependence of the
relaxation time and non-exponential, two-step decay of the correlation function) are similar to
those observed in glass-forming liquids. An appealing feature of Coulomb frustrated systems
is that the fragility of the system, characterized here by its degree of departure from Arrhenius
behaviour, can be continuously varied by changing the frustration strength. Interestingly, the
‘fragile glass-forming’ behaviour of such uniformly frustrated systems is supported by both the
phenomenological scaling analysis of the FLDT [8] and the entropic droplet argument based
on the ideal glass transition scenario [16, 19].
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